
MV2þ. Likewise, Tris–HCl buffer (25 mM, pH 7.5 with 100 mM KCl) solutions of GroEL–
CdS complex and T.th cpn–CdS complex (2 ml, 700 nm based on Cd2þ) were titrated.
Emission (l ext ¼ 370 nm) spectra were recorded on a FP-777W spectrophotometer
(JASCO).

Thermal stability
Fluorescence spectra (l ext ¼ 370 nm, wavelength of observed fluorescence
lobsd ¼ 530 nm) of GroEL–CdS complexes and T.th cpn–CdS complexes were recorded at
designated temperatures on a FP-777W spectrophotometer (JASCO), where the
fluorescence intensities at 4 8C were used as the bases for relative fluorescence intensities.
The temperature was directly controlled by a ECT271 Peltier thermometric apparatus
(JASCO; 40 8C min21 on heating and 25 8C min21 on cooling).

ATP response
To a 2-ml Tris–HCl buffer (25 mM, pH 7.5 with 100 mM KCl) solution of T.th cpn–CdS
complexes (0.5 mM based on T.th cpn) were added aqueous solutions of ATP (100 mM)
and MgCl2 (1 M) ([ATP] ¼ 20 mM, [Mg2þ] ¼ 25 mM after mixing), and the mixture was
incubated at 70 8C for 10 min. The supernatant solution was subjected to fluorescence
spectroscopy and analytical SEC with an UV/fluorescence dual detector.
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(FeHR ¼ FeD þ FeP) and FeT, and the ratio FeP/(FeP þ FeH), known
as the degree of pyritization (DOP), have been used successfully to
evaluate the redox state of ancient oceans10–13. DOP , 0.45 and
FeHR/FeT , 0.38 are generally found for sediments depositing from
oxic bottom water, whereas DOP . 0.45 and FeHR/Fe
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sea sediments are comparable in magnitude, but oxic environments
record a much greater range of values13,20.

The same is true for Phanerozoic examples. Gauthier21 measured
d34S values for pyrites deposited beneath oxic and anoxic bottom



The documentation of euxinic and low sulphate conditions in
mid-Proterozoic marine basins paves the way to an improved
understanding of early life and environments. In such oceans,
methanogenic archaeans could have played an enhanced role in
the carbon cycle, contributing to long-lived greenhouse con-
ditions27. Low sulphate may also help to explain the prominence
of penecontemporaneous dolomite in mid-Proterozoic and older
carbonate platforms28. Through its effects on biologically important
trace elements, seawater chemistry may help to explain the ecologi-


