

MATHEMATICS ENRICHMENT CLUB.1 Problem Sheet 8, June 20, 2012

- 1. The last digit of 1997¹⁹⁹⁷ is
 - (a) 1
- (b) 3 (c) 5 (d) 7
- (e) 9:
- 2. The number of positive integers less than 1000 which are divisible neither by 3 nor 4 is
 - (a) 582
- (b) 499
- (c) 500
- (*d*) 7501
- (e) None of these:
- 3. Draw a right triangle ABC with right-angle at C and the sides marked a; b; c.²
 - (a) Draw the enlargement $A^{\ell}B^{\ell}C^{\ell}$ of ABC by a factor of a.
 - (b) On the same diagram draw the enlargement $A^{\emptyset}B^{\emptyset}C^{\emptyset}$ of ABC by a factor of b, lining up $B^{\ell}C^{\ell}$ with $A^{\ell\ell}C^{\ell\ell}$, so that $A^{\ell\ell}=B^{\ell}$, $C^{\ell\ell}=C^{\ell}$, and $A^{\ell\ell}C^{\ell\ell}$ and $B^{\ell\ell\ell}$ are collinear, and thus form a new triangle $A^{\emptyset}A^{\emptyset\emptyset}B^{\emptyset\emptyset}$.
 - (c) Explain why the angle $A^{\emptyset}A^{\emptyset}B^{\emptyset}$ is a right angle.
 - (d) What theorem have you just proven and why?
- 4. Find all positive integer solutions to

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{6}$$

- 5. (a) Find the greatest common divisor of $2^{50} + 1$ and $2^{20} + 1$.
 - (b) Explain why the greatest common divisor of $2^m + 1$ and $2^n + 1$ is at least 3 if mand *n* are both odd.
- 6. (a) Prove that the angle in a semicircle is right-angle.
 - (b) Show that if two chords of a circle mutually bisect each other, then they are both diameters.
 - (c) Complete the following statement: If a parallelogram is inscribed in a circle then
- 7. (a)

Senior Questions

$$\lim_{x \neq 1} \frac{3x^2 + \sin(2x^2)}{x^2}$$

$$\lim_{x \neq 0} \frac{3x^2 + \sin(2x^2)}{x^2}$$