

MATHEMATICS ENRICHMENT CLUB.¹ Problem Sheet 15, September 3, 2012

- 1. In how many ways can we change \$10 into 50 cent and 20 cent coins, with at least one of each coin being used.
- 2. If x = 0 $\frac{9}{1 + 1}$ $\frac{1}{1 + 2}$ nd the exact value of x^4 $2x^2$.
- 3. A quadrilateral in which a circle can be drawn which touches each of the four faces is called a *circumscribable quadrilateral*. If r is the radius of the circle and s is half the perimeter of the quadrilateral, prove that the area of the quadrilateral is rs.
- 4. Use the fact that $2xy = (x + y)^2 x^2 y^2$ to show that

$$2(b \ c)(c \ a) + 2(c \ a)(a \ b) + 2(a \ b)(b \ c) \ 0$$

for all real numbers a; b; c.

5. (a) Find all positive integers a; b; c such that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ is as large as possible but less than $\frac{1}{2}$:

(b)

2. Prove by induction that the sum to k terms of

$$1^2$$
 $3^2 + 5^2$ $7^2 + \dots$

equals $8n^2$ when k = 2n and $8n^2 + 8n + 1$ when k = 2n + 1.

3. In ABC prove that $b^2(\cot A + \cot B) = c^2(\cot A + \cot C)$. (Hint: You might begin by considering the area of the triangle in two di erent ways.)