Dependence modeling in General Insurance using LGC and HMMs

Zabibu Afazali (Makerere University, Uganda)

July 26, 2023

PhD Forum Presentation

Actuarial, Finance, Risk, and Insurance Congress(AFRIC)

Dependence modeling-Motivation

• Diversification, reserving, pricing, reinsurance

Dependence modeling-Motivation

- Diversification, reserving, pricing, reinsurance
- Non-linear and tail dependence- an issue?

LGC

• Linear to non-linear interpretation

LGC

- Linear to non-linear interpretation
- Comprehensible visualizations

LGC

- Linear to non-linear interpretation
- Comprehensible visualizations
- Entire dependence structure by set of pairwise correlations

LGC

- Linear to non-linear interpretation
- Comprehensible visualizations
- Entire dependence structure by set of pairwise correlations
- Guassian densities approximated locally using a bivariate correlation function

LGC

- Linear to non-linear interpretation
- Comprehensible visualizations
- Entire dependence structure by set of pairwise correlations
- Guassian densities approximated locally using a bivariate correlation function

HMMs

• Capture complex temporal dependencies

LGC

۲

LGC

- Linear to non-linear interpretation
- Comprehensible visualizations
- Entire dependence structure by set of pairwise correlations
- Guassian densities approximated locally using a bivariate correlation function

- Capture complex temporal dependencies
- Handling Varying Patterns and Regimes.
- Assumes that data-generating process corresponds to a time-dependent mixture of conditional distributions driven by Hidden states

LGC basic notation

Define

- Let $X = (X_1, X_2)$ 2D RV with density $f(x) = f(x_1, x_2)$ and be a Guassian bivariate
- $\mu(x) = (\mu_1(x), \mu_2(x))$ is the local mean vector
- $(x) = _{ij}(x)$ is the local covariance matrix.

LGC basic notation

Define

- Let $X = (X_1, X_2)$ 2D RV with density $f(x) = f(x_1, x_2)$ and be a Guassian bivariate
- $\mu(x) = (\mu_1(x), \mu_2(x))$ is the local mean vector
- $(x) = _{ij}(x)$ is the local covariance matrix.
- (x) is the correlation coe cient in

LGC basic notation

Define

- Let $X = (X_1, X_2)$ 2D RV with density $f(x) = f(x_1, x_2)$ and be a Guassian bivariate
- $\mu(x) = (\mu_1(x), \mu_2(x))$ is the local mean vector
- $(x) = _{ij}(x)$ is the local covariance matrix.
- (x) is the correlation coe cient in
- Approximate f locally at each point x by $_x()$
- = $\begin{pmatrix} 1 & 2 \end{pmatrix}^T$ is the running variable
- The local population parameters $(x) = (\mu(x), (x))$ can be defined by minimizing a penalty function q measuring the di erence between f and

•
$$C_t$$
: $t = 1, \ldots, T$ hidden states,

HMMs basic notation

- C_t : $t = 1, \ldots, T$ hidden states,
- R_t : t = 1, ..., T observed variables

HMMs basic notation

- C_t : $t = 1, \ldots, T$ hidden states,
- R_t : t = 1, ..., T observed variables
- = _{ij} TPM and stationary distribution

HMMs basic notation

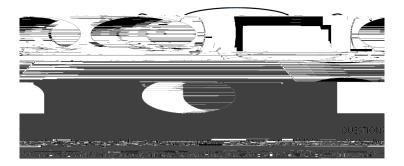
- C_t : $t = 1, \ldots, T$ hidden states,
- R_t : $t = 1, \ldots, T$ observed variables
- = _{ij} TPM and stationary distribution
- R^(t) the "history" of the observed process

- C_t : $t = 1, \ldots, T$ hidden states,
- R_t : $t = 1, \ldots, T$ observed variables
- = _{ij} TPM and stationary distribution
- $R^{(t)}$ the "history" of the observed process
- vector of model parameters

- C_t : $t = 1, \ldots, T$ hidden states,
- R_t : $t = 1, \ldots, T$ observed variables
- = _{ij} TPM and stationary distribution
- $R^{(t)}$ the "history" of the observed process
- vector of model parameters
- Express L() likelihood of observations

- C_t : $t = 1, \ldots, T$ hidden states,
- R_t : $t = 1, \ldots, T$ observed variables
- = _{ij} TPM and stationary distribution
- $R^{(t)}$ the "history" of the observed process
- vector of model parameters
- Express L() likelihood of observations
- Compute L() using forward (or Backward) algorithm

- C_t : $t = 1, \ldots, T$ hidden states,
- R_t : $t = 1, \ldots, T$ observed variables
- = _{ij} TPM and stationary distribution
- $R^{(t)}$ the "history" of the observed process
- vector of model parameters
- Express L() likelihood of observations
- Compute L() using forward (or Backward) algorithm
- Used TMB



Two data sets from Kenya and Norway, monthly and then weekly

The Data

- Two data sets from Kenya and Norway, monthly and then weekly
- 7 lines of business considered (Personal Accident, Fire

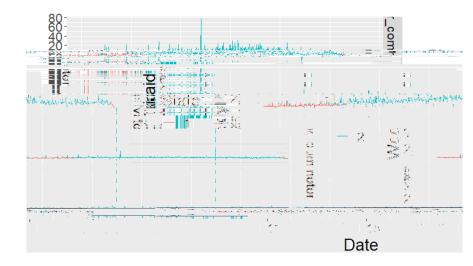
- Two data sets from Kenya and Norway, monthly and then weekly
- 7 lines of business considered (Personal Accident, Fire industrial, Motor private, motor comprehensive, Workers compensation, liability, Engineering)
- LGC and HMM Illustrated using Motor LoBs and Homeowners Insurance LoBs

- Two data sets from Kenya and Norway, monthly and then weekly
- 7 lines of business considered (Personal Accident, Fire industrial, Motor private, motor comprehensive, Workers compensation, liability, Engineering)
- LGC and HMM Illustrated using Motor LoBs and Homeowners Insurance LoBs
- For motor-15 years from July 2007 to Dec 2021 giving 756 weekly records.

motor_commercial vs motor_private_rho = 0.85

Zabibu Afazali (Makerere University, Uganda)

Dependence modeling in General Insurance using LGC and HMM

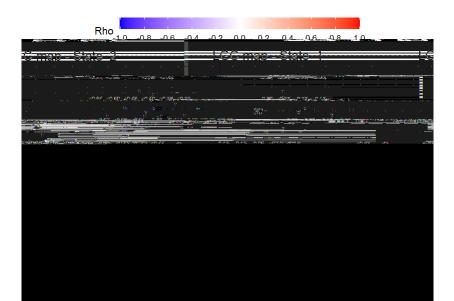


Zabibu Afazali(Makerere University, Uganda) Dependence modeling in General Insurance using LGC and HMM

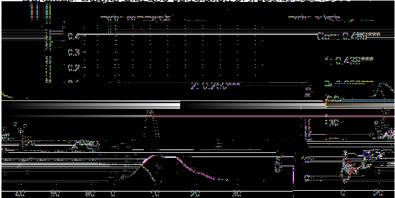
Table: Table central measures

Descriptive measures										
LoB	States	n	mean	sd	median	min	max	Skew	Kurtosis	se
Motor-	state 1	615	4.41	3.53	3.74	-1.23	15.789	0.69	-0.33	0.14
commercial										
	state 2	141	11.65	9.14	10.53	-12.59	77.03	2.62	16.79	0.77
	All states	756	5.76	5.79	4.44	-12.59	77.03	3.42	30.96	0.21
Motor- private	state 1	615	9.09	5.94	8.94	-1.74	27.33	0.3	-0.69	0.24
	state 2	141	15.34	7.11	15.29	-1.04	36.52	0.54	0.27	0.6
	All states	756	10.25	6.64	9.99	-1.74	36.52	0.52	0.2	0.24
Workers-	state 1			•	•					

Compen



Zabibu Afazali (Makerere University, Uganda) Dependence modeling in General Insurance using LGC and HMM



Densities. Scatter plot and correlation of true states

Zabibu Afazali (Makerere University, Uganda) Dependence modeling in General Insurance using LGC and HMM

Test of asymmetric dependence between states

Hypothesis:

$$H_0: _1(x_i, y_j) =$$

 Complex dependency structures can be modeled using a mix of LGC and HMMs

Conclusion

- Complex dependency structures can be modeled using a mix of LGC and HMMs
- Model found time carrying dependency-financial crisis
- Dependency structure di ers

- Complex dependency structures can be modeled using a mix of LGC and HMMs
- Model found time carrying dependency-financial crisis
- Dependency structure di ers
- This analysis enables insurers to better assess and manage their overall risk exposure across di erent lines of business especially during economic, political crisis periods

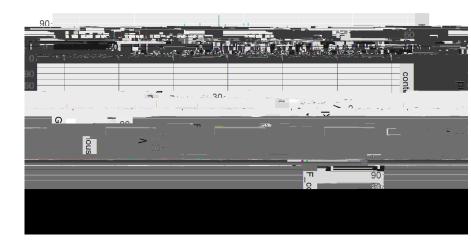
• Try t-distribution instead of normal for the HMMs

- Try t-distribution instead of normal for the HMMs
- consider the other data set (content + house insurance from Norway) + publicly available data

- Try t-distribution instead of normal for the HMMs
- consider the other data set (content + house insurance from Norway) + publicly available data
- Compare with other dependency modeling techniques like Bernstein copulas, Vine Copulas?

- Try t-distribution instead of normal for the HMMs
- consider the other data set (content + house insurance from Norway) + publicly available data
- Compare with other dependency modeling techniques like Bernstein copulas, Vine Copulas?
- Include covariates? claim reporting delays, settlement delays,

- Try t-distribution instead of normal for the HMMs
- consider the other data set (content + house insurance from Norway) + publicly available data
- Compare with other dependency modeling techniques like Bernstein copulas, Vine Copulas?
- Include covariates? claim reporting delays, settlement delays,
- Apply to Reserving, pricing, reinsurance arrangements?



Zabibu Afazali (Makerere University, Uganda) Dependence modeling in General Insurance using LGC and HMM