Gaussian Process-Based Mortality Monitoring using Multivariate Cumulative Sum Procedures

Karim Barigou Stéphane Loisel Yahia Salhi

AFRIC 2023

karim.barigou@act.ulaval.ca

www.karimbarigou.com

July 25, 2023

Monitoring mortality rates is crucial for the risk management of life insurance.

Challenges:

- Quickest detection: In a rapidly changing environment, actuarial assumptions should be monitored quickly and e ciently. Real-time sequential detection
- Correlation: Mortality data often exhibit interdependencies between di erent age groups or cohorts. Gaussian Process (GP) regression
- Multivariate detection: Univariate detection methods ignore the complex dependence structure, limiting their e ectiveness. MCUSUM algorithm

Monitoring mortality rates is crucial for the risk management of life insurance.

Challenges:

- Quickest detection: In a rapidly changing environment, actuarial assumptions should be monitored quickly and e ciently. Real-time sequential detection
- Correlation: Mortality data often exhibit interdependencies between di erent age groups or cohorts. Gaussian Process (GP) regression
- Multivariate detection: Univariate detection methods ignore the complex dependence structure, limiting their e ectiveness. MCUSUM algorithm

Proposed approach:

- ► Forecasting: Mortality forecasting based on GP regression.
- MCUSUM monitoring: Tracks di erences between predicted and observed mortality rates, enabling real-time change detection.
- Which change?
 - Change of level by tracking mortality rates.
 - Change of trend by tracking mortality improvements.
- Empirical analysis for France, Japan, Canada, and the USA.
- The MCUSUM shows quicker detection to univariate alternatives that ignore dependence.

-GP-based mortality forecasting

Gaussian process for mortality forecasting

• Training set: (x^{i}, y^{i}) (i = 1, ..., n).

- ► In our case: $\mathbf{x}^i = (x^i_{age}, x^i_{year})$ and $y^i = \log(D^i / E^i)$.
- Age: *M* age-groups, e.g.
 - $Z_1 = [50; 55); Z_2 = [55; 60); \ldots; Z_M = [85; 90).$
- T years: [1980,2020].
- Gaussian process:

$$f(\mathbf{x}) = N(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x})),$$

where k(x, x) is the covariance matrix.

- Completely characterized by mean function m(x) and covariance/kernel function k(x, x).
- Key reference: Ludkovski et al. (2018).

GP-based mortality forecasting

Gaussian process for mortality forecasting

GP-based mortality forecasting

Gaussian process for mortality forecasting

GP posterior distribution is multivariate normal.

-Online monitoring via the MCUSUM algorithm

The MCUSUM for multivariate normal (continued)

- For mortality monitoring, log death rates follow
 - In-control process: $\mathcal{N}(\mu_1, \cdot)$.
 - Out-of-control process: $N(\mu_2,)$.
- The MCUSUM is

$$S_{t} = \max \left(S_{t-1} + (\mu_{2} - \mu_{1})^{-1} (y^{t} - \mu_{1}) - \frac{1}{2} (\mu_{2} - \mu_{1})^{-1} (\mu_{2} - \mu_{1}), 0 \right).$$

-Online monitoring via the MCUSUM algorithm

What type of change?

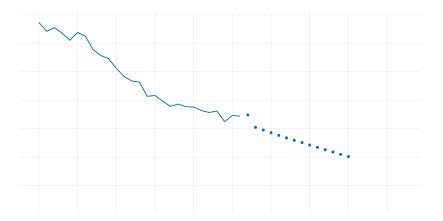


Figure: Mortality rate at age 65 in France with Lee-Carter forecasts, change of level and change of trend with a change point in 2017.

Online monitoring via the MCUSUM algorithm — Change of level detection

Change of level Detection

The change-point model for level change detection can be expressed as

$$\mathbb{E}[\log(\mu_t)] \quad \begin{cases} m_t & \text{for } i = 1, \dots, \\ \overline{m_t} & \text{for } i = -1, \dots \end{cases}$$

where e.g. $\overline{m_t} = m_t + \log() 1$ with = 0.9 (longevity risk). The generalized MCUSUM is defined by:

$$S_{t} = \max \left(S_{t-1} + (\overline{m_{t}} - m_{t})' \quad t^{-1} \left(y^{t} - m_{t} \right) - \frac{1}{2} \left(\overline{m_{t}} - m_{t} \right)' \quad t^{-1} \left(\overline{m_{t}} - m_{t} \right), 0 \right)$$

where

1 y^t is the vector of observed log death rates.

2 m_t and t are the mean and covariance from GP-based for racists

Online monitoring via the MCUSUM algorithm — Change of trend detection

Change of trend detection

The change-point model for trend change detection can then be expressed as

$$\mathbb{E}\left[\log(\mu_t) \right] \quad \left\{ \begin{array}{ll} \frac{m'_t}{m'_t} & \text{for } i = 1, \dots, \\ \frac{m'_t}{m'_t} & \text{for } i = +1, \dots \end{array} \right.$$

where

1 Mortality improvements: $\log(\mu_t) = \log(\mu_t) - \log(\mu_{t-1})$ **2** Trend change: $\overline{m}_t^l = \log(\exp(m_t^l) - 1)$

How to fix the threshold L?

$$\mathbb{P}\left[\max_{1 \quad i \quad T} S_i \quad L \mid \text{no change}\right] =$$

determined by simulations.

threshold?

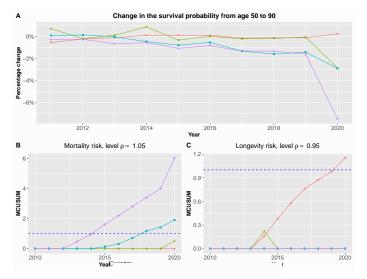
Monitoring longevity and mortality risks: Applications to real mortality data

Empirical analysis

- Countries: France, Canada, USA and Japan.
- Ages: 50-89 by 5-year age tranches.
- Years:
 - 1 Estimation: 1991-2010.
 - 2 Detection: 2011-2020.
- Detection types:

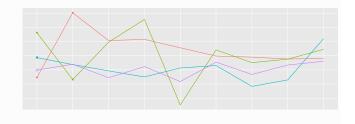
1

Empirical analysis: change of level



Monitoring longevity and mortality risks: Applications to real mortality data

Empirical analysis: change of trend



Simulation study: Comparison MCUSUM and CUSUM charts

-Simulation study: Comparison MCUSUM and CUSUM charts

MCUSUM vs univariate CUSUM charts

What is the added value of the MCUSUM?

Standard age-period-cohort models assume perfect correlation

-Simulation study: Comparison MCUSUM and CUSUM charts

MCUSUM vs univariate CUSUM charts

What is the added value of the MCUSUM?

Standard age-period-cohort models assume perfect correlation, e.g. for the Lee-Carter model:

 $\log(\mu$

-Simulation study: Comparison MCUSUM and CUSUM charts

MCUSUM vs univariate CUSUM charts

The comonomotonic CUSUM is defined as

$$S_t^c = \max\left(S_{t-1}^c + (\mu_t - \mu_t)\frac{(s_t - \mu_t)}{t} - \frac{1}{2}\frac{(\mu_t - \mu_t)^2}{t}, 0\right),$$

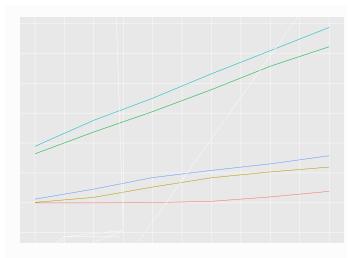
with

$$\mu_{t} = \sum_{x=1}^{M} m_{i,t} \qquad t = \sum_{x=1}^{M} i,t$$
$$\mu_{t} = \mu_{t} + M \log(0) \quad s_{t} = \sum_{x=1}^{M} y_{i,t}$$

with $m_{i,t}$ and $_{i,t}$, the mean and standard deviations of the *i*-th component of the log death rates vector $\mathbf{y}_t = (y_{1,t}, \dots, y_{M,t})$.

Simulation study: Comparison MCUSUM and CUSUM charts

Comparison of the MCUSUM and C-CUSUM charts



17/1

-Conclusion

Conclusion

- GP-based mortality forecasts combined with the MCUSUM detection rule provide several benefits:
 - 1 Capture the dependence between age classes.
 - **2** E cient real-time multivariate monitoring for e.g.
 - ★ Change of level.
 - ★ Change of trend.
 - **3** Detection of longevity risk in Japan and mortality risk in USA and Canada over the 10-year period 2011-2020.
 - 4 Outperformance compared to univariate control charts that ignore the dependence structure.

Thank you for your attention! Any questions?

GP-based mortality forecasts combined with the MCUSUM detection rule provide several benefits:

118/18

Gaussian Process-Based Mortality Monitoring

-Appendix

18/18

Extra slides just in case

Figure: Percentage change between observed and GP-predicted death rates by age tranches for Japanese males.

Appendix

Extra slides just in case

- Appendix

Extra slides just in case

	[50,55)	[55,60)	[60,65)	[65,70)		[85,90)
[50; 55)	1		/2	0	0	0
[55; 60)		1		/2	0	0
[60,65)	/2		1		/2	0
[65,70)	0	/2		1		/2
	0	0	/2		1	
[85; 90) .	0	0	0	/2		1

Table: Correlation matrix between age tranches used for the simulation study.

Gaussian Process-Based Mortality Monitoring

Appendix

Extra slides just in case

Figure: Estimated correlation matrix for Japanese male death rates in 2011.

Ludkovski, M., Risk, J. & Zail, H. (2018), 'Gaussian process models for mortality rates and improvement factors', *ASTIN Bulletin: The Journal of the IAA*

