An axiomatic theory for comonotonicity-based risk sharing

J. Dhaene, C.Y. Robert, K.C. Cheung, M. Denuit

AFRIC, Victoria Falls, July 2023

1. Introduction

Consider a pool of individual random future losses.

Decentralized risk-sharing:

Refers to <u>risk-sharing</u> (RS) mechanisms under which the participants in the pool share their risks among each other.

Each participant in the <u>risk-sharing pool</u> is compensated *ex-post* from the pool for his loss.

In return, each participant pays an ex-post <u>contribution</u> to the pool.

These contributions follow from a <u>risk-sharing rule</u>, satisfying the *self-...nancing condition*.

Decentralized risk-sharing does not require an insurer, but an administrator.

Agents and their losses

Let χ be an appropriate (su¢ ciently rich) set of r.v.'s in the probability space (W, , P), representing random losses at time 1.¹

Consider n economic <u>agents</u>, numbered i = 1, 2, ..., n.

Each agent *i* faces a loss X_i χ at the end of the observation period [0, 1].

Without insurance or pooling, each agent bears his own loss:

Pools of losses

The joint cdf of the <u>loss vector</u> $X = (X_1, X_2, ..., X_n)$ is denoted by F_X .

The marginal cdf's of the individual losses are denoted by F_{X_1} , F_{X_2} , ..., F_{X_n} .

The <u>aggregate loss</u> faced by the *n* agents with loss vector X is denoted by $S_X = \mathring{a}_{i=1}^n X_i$.

Hereafter, we will often call X the <u>pool</u>, and call each agent a <u>participant</u> in the pool.

Allocations

<u>De...nition</u>: For any pool X χ^n with aggregate loss S_X the set $_n(S_X)$ is de...ned by:

$$_{n}(S_{\mathsf{X}}) = \left\{ (Y_{1}, Y_{2}, \dots, Y_{n}) \mid \chi^{n} \quad \overset{n}{\underset{i}{\mathsf{a}}} Y_{i} = S_{\mathsf{X}} \right\}$$

The elements of $_n(S_X)$ are called the n-dimensional allocations of S_X in χ^n .

Risk-sharing

<u>De...nition</u>: <u>Risk-sharing</u> in a pool X χ^n is a two-stage process.

Ex-ante step (at time 0):

The losses X_i in the pool are re-allocated by transforming X into another random vector H_X $n(S_X)$:

$$H_X = \left(\textit{H}_{X,1}, \textit{H}_{X,2}, \ldots, \textit{H}_{X,n} \right)$$

Ex-post step (at time 1):

Each participant i receives from the pool the realization of his loss X_i .

In return, he pays to the pool a contribution equal to the realization of his re-allocated loss $H_{X,i}$.

Remark: As H_X $n(S_X)$, risk sharing is self-...nancing:

$$\mathop{\mathring{a}}_{i=1}^n H_{X,i} = \mathop{\mathring{a}}_{i=1}^n X_i$$

Risk-sharing rules

<u>De...nition</u>: A <u>risk-sharing rule</u> is a mapping $H: \chi^n = \chi^n$ satisfying the self-...nancing condition:

$$X H_X n(S_X)$$
, for any $X \chi^n$

<u>Remarks</u>: For any participant i in the pool $X = (X_1, ..., X_n)$, X_i is called his <u>loss</u>, (paid by the pool).

 $H_{X,i}$ is called his <u>contribution</u>, (paid to the pool).

Contribution vector:

$$\mathsf{H}_{\mathsf{X}} = \left(H_{\mathsf{X},1}, H_{\mathsf{X},2}, \ldots, H_{\mathsf{X},n} \right)$$

Internal risk-sharing rules

<u>Notation</u>: (χ^n) is the class of all cdf's of elements in χ^n .

<u>De...nition</u>: $H: \chi^n = \chi^n$ is an <u>internal RS rule</u> if there exists a function $h: R^n = (\chi^n) = R^n$ such that the contribution vector H_X of any $X = \chi^n$ is given by :

$$H_X = h\left(X, \textit{F}_X\right)$$

Remarks:

h is called an internal function of the RS rule H.

Hereafter, we only consider internal risk-sharing rules.

Aggregate risk-sharing rules

<u>De...nition</u>: $H: \chi^n = \chi^n$ is an <u>aggregate RS rule</u> if there exists a function $h^{aggr}: R = (\chi^n) = R^n$ such that the contribution vector H_X of any $X = \chi^n$ is given by:

$$H_X = h^{aggr}(S_X, F_X)$$

<u>Property</u>: Any aggregate RS rule H is <u>internal</u>, with internal function h satisfying:

$$h(X; F_X) = h^{aggr}(S_X, F_X)$$
 for any $X = \chi^n$

Dependence-free risk-sharing rules

<u>De...nition</u>: $H: \chi^n \quad \chi^n$ is a <u>dependence-free RS rule</u> if there exists a function $h^{\text{dep-free}}: R^n \quad (\chi)^n \quad R^n$ such that the contribution vector H_X of any $X \quad \chi^n$ is given by:

$$\mathsf{H}_\mathsf{X} = \mathsf{h}^\mathsf{dep\text{-}free}\left(\mathsf{X}, F_{\mathsf{X}_1}, \ldots, F_{\mathsf{X}_n}\right)$$

<u>Property</u>: Any dependence-free RS rule H is <u>internal</u>, with <u>internal</u> function h satisfying:

$$h(X; F_X) = h^{dep-free}(X, F_{X_1}, \dots, F_{X_n})$$
 for any $X = \chi^n$

3. Examples of risk-sharing rules

The conditional mean risk-sharing rule

<u>De...nition</u>²: The <u>conditional mean RS rule</u> H^{cm} is de...ned by

$$H_i^{cm}(X) = E[X_i \quad S_X], \qquad i = 1, 2, \dots, n,$$

for any $X \chi^n$.

<u>Interpretation</u>: Each participant contributes the expected value of the loss he brings to the pool, given the aggregate loss experienced by the pool.

Property:

H^{cm} is internal and aggregate, but not dependence-free.

4. The quantile risk-sharing rule

Motivation

Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ be the realization of \mathbf{X} .

There exist probabilities p_1, \ldots, p_n such that

$$\mathbf{x} = \left(F_{X_1}^{1},\right)$$

4. The quantile risk-sharing rule

De...nition:

Under the quantile RS rule $H^{quant}: \chi^n = \chi^n$, the contribution vector of $X = \chi^n$ is given by

$$H_{X}^{quant}=h^{quant}\left(\mathcal{S}_{X},\mathcal{F}_{X}\right)$$

where h^{quant} : R (χ^n) Rⁿ is de...ned by

$$h_i^{\text{quant}}\left(s,F_{\mathsf{X}}\right)=F_{X_i}^{-1}\left(F_{S_{\mathsf{X}}^c}(s)\right), \qquad i=1,2,\ldots,n$$

Properties:

H^{quant} satis...es the self-...nancing condition.

H^{quant} is an aggregate RS rule.

H^{quant} is a dependence-free RS rule.

5. The 'stand-alone for comonotonic pools' property

<u>De...nition</u>: $X \chi^n$ is a comonotonic pool in case

$$X \stackrel{d}{=} \left(F_{X_1}^{-1}\left(U\right), \dots, F_{X_n}^{-1}\left(U\right)\right)$$

<u>De...nition</u>: A RS rule H : χ^n χ^n satis...es the stand-alone for comonotonic pools property if for any comonotonic pool X^c χ^n , one has that

$$\mathsf{H}_{\mathsf{X}^c}=\mathsf{X}^c$$

<u>Property</u>: H^{quant} satis...es the stand-alone for comonotonic pools property.

6. Axiomatic characterization of the quantile RS rule

Theorem:

Consider the internal RS rule $H: \chi^n = \chi^n$.

H is the quantile RS rule if, and only if, it satis...es the following axioms:

- (1) H is <u>aggregate</u>.
- (2) H is dependence-free.
- (3) H is (generalized) stand-alone for comonotonic pools⁴.

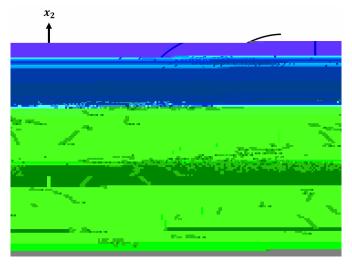
Proposition:

The axioms (1), (2) and (3) are independent.

⁴The 'generalized stand-alone for comonotonic pools' property is a slightly stronger property than the 'stand-alone for comonotonic pools' property, see D,R,C,D (2023).

6. Axiomatic characterization of the quantile RS rule

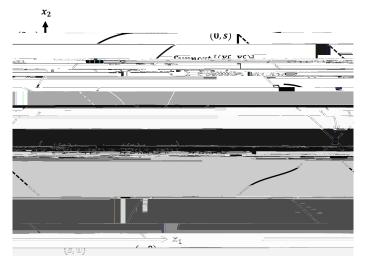
Graphical proof of the theorem (bivariate case)



$$h(x, F_X) \stackrel{\text{axiom 1}}{=} h(x^c, F_X) \stackrel{\text{axiom 2}}{=} h(x^c, F_{X^c}) \stackrel{\text{axiom 3}}{=} x^c$$

6. Axiomatic characterization of the quantile RS rule

Graphical proof of the theorem (bivariate case)



$$h(x, F_X) \stackrel{\text{axiom 1}}{=} h(x^c, F_X) \stackrel{\text{axiom 2}}{=} h(x^c, F_{X^c}) \stackrel{\text{axiom 3}}{=} x^c$$

7. Example of a non-internal risk-sharing rule

Consider the RS rule $H: \chi^n = \chi^n$, where any $X = \chi^n$ is a pool of health-related costs of the participants.

References

Contact

Jan Dhaene Actuarial Research Group, KU Leuven Naamsestraat 69, B-3000 Leuven, Belgium

www.jandhaene.org

jan.dhaene@kuleuven.be