Table of contents

- 1. Motivation and Background
- 2. Worst-case scenario without transform
- 3. Worst-case scenario with transform
- **Conclusion and Reference**

-1. Motivation and Background

Insurance 101

Insurance is an e ective risk management tool used to protect against contingent losses of market participants.

where I 2 I is an admissible indemnity function, and is a premium principle.

-1. Motivation and Background

Classical optimization problems in insurance

Popular optimal (re-)insurance design problems:

1. Maximize expected utility:

```
\max_{|2|} E[v(w X + I(X) (I(X)))]:
```

Arrow (1963): optimality of a stop-loss contract. Gerber(1979), Young (1999), Kaluszka (2001,2005), etc.

2. Minimize risk measure:

$$\min_{12l} (X I(X) + (I(X))):$$

Cai et al. (2008), Kaluszka and Okolewki (2008), Bernard and Tian (2009), Cheung (2010), etc.

All problems are considered under the assumption that distribution of X is known. Can we take this assumption for granted?

-1. Motivation and Background

Uncertainty

From data to models

Parameter uncertainty Estimation error, simulation error, etc

Model uncertainty

Choice of models, complexity of models, etc.

Distributional uncertainty

Only partial information about the true distribution are observed from the historical data.

Changes of the underlying risks

In a conservative decision, the vorst-case distribution is important

-1. Motivation and Background

Worst-case scenario

Suppose an agent faces an underlying rixk

is the loss function/strategy the agent adopts.

- is the risk measure used to quantify the agent's risk exposure
- S is the uncertainty set includes all distributions of alternative risks considered

From the perspective of risk management, theorst-case scenario in which the agent has the largest risk exposure is of special interests.

The agent's optimization problem with model uncertainty can be formulated as

$$\underset{\substack{F = 2S \\ \text{worst-case scenario}}{\text{worst-case scenario}} X^F F:$$

-1. Motivation and Background

Literature

In the literature of insurance Asimit et al. (2017): for = VaR; ES, $\begin{cases} 8 \\ < \min_{\substack{(I;P)2I \\ R k2M}} P_k(X = I(X) + P)g; \\ \vdots s.t. ! _0 + (1 +)H_{P_k}(I(X)) = P; 8k 2 M : \end{cases}$

where P_k , k 2 M includes nite many probability measures. Birghila and P ug (2019)

$$\min_{12I} \max_{F2C} (X^F - I(X^F) + (I(X^F))g; s.t. (I(X^F)) - B$$

where C is the convex cone of reference distributions. Liu and Mao (2021): for = VaR; ES,

$$\min_{d = 0} \sup_{F \ge S(;)} (X^{F} \land d + (1 +)E^{F}[(X^{F} d)_{+}]):$$

where S(;) gives rst & second moments constraints.

-1. Motivation and Background

In this talk, we focus on theworst-case scenario for an agent

where

h is a distortion risk measure (e.g. Dhaene et al. (2012)):

$$A_{h}(X^{F}) =$$
 $A_{1}(F(x))dx +$ $A_{1}(F(x))dx =$ $Z_{1}(u)F^{-1}(u)du;$

where h: [0; 1] 7! [0; 1] is non-decreasing (convex) with(0) = 0 and h(1) = 1, and (u) = $h^{0}(u)$, 0 < u < 1

S is the uncertainty set de ned by Wasserstein distance constraints

is the loss function/strategy the agent adopts.

-2. Worst-case scenario without transform

1. Motivation and Background

2. Worst-case scenario without transform

3. Worst-case scenario with transform

Wasserstein distance constraint Wasserstein distance plus moments constraints

Conclusion and Reference

-2. Worst-case scenario without transform

Uncertainty set with Wasserstein distance constraint

For X F and Y G, for k 1, the Wasserstein distance is $W_{k}(X;Y) = W_{k}(F;G) = \int_{0}^{Z_{1}} F^{1}(x) G^{1}(x)^{k} \stackrel{1=k}{:}$

The uncertainty set with Wasserstein distance constraint

 $S = fr. v. Y : W_k(Y; X)$ "W97 0 87luel)

Uncertainty set with Wasserstein distance constraint

Theorem (Proposition 4 in Liu et al. (2022)) For a continuous and convex distortion functio**h**,

$$\sup_{h}(X^{G}): W_{k}(G;F) = {}_{h}(X^{F}) + {}^{*}k k_{q};$$

where $q = (1 \quad 1=k)^{-1}$ with the convention $0^{-1} = 1$, and jj jj_q is the L_q-norm. For k > 1, the above maximum value is attained by the worst-case

distribution

$$G^{-1}(t) = F^{-1}(t) + "\frac{(-(t))^{q-1}}{k k_q^{q=k}}; \quad 0 < t < 1:$$

-2. Worst-case scenario without transform

Example { Expected shortfall (ES) Take = ES for 2 (0; 1), then $(X) = \begin{bmatrix} R_1 \\ 0 \end{bmatrix} VaR_t(X)dh(t)$, where $h(t) = \frac{1}{1}(t)^+$ and $(t) = \frac{1}{1} \mathbf{1}_{[; 1]}$:

The worst-case value is

n sup ES (X^G) : W_k(G; F

-3. Worst-case scenario with transform

- Wasserstein distance constraint

- 1. Motivation and Background
- 2. Worst-case scenario without transform

Worst-case scenario with transform Wasserstein distance constraint Wasserstein distance plus moments constraints

Conclusion and Reference

- 3. Worst-case scenario with transform

Wasserstein distance constraint

Uncertainty set with Wasserstein distance constraint

Uncertainty set is

$$S = fG: W_k(G; F) \quad "g$$

where X^F F is considered as a reference distribution, and the tolerant bound for the Wasserstein distance.

Consider the worst-case scenario:

$$\sup_{\substack{\text{G2S}}} {}_{h}(\ (X^{\text{G}})) = \sup_{h}(\ (X^{\text{G}})); W_{k}(\text{G}; \text{F}) \quad ";$$

with two types of loss functions:

Stop-loss function: (optimal to the utility maximization)

 $(x) = (x d)^+$

Limited-loss function: (optimal to the VaR minimization)

 $(x) = \min f x; Mg$

-3. Worst-case scenario with transform

Wasserstein distance constraint

Stop-loss function

Take $i_1(x) = (x \quad d)^+$ for d > ess-inf(X)

Worst-case risk measure

$$\sup_{h}((X^{G} d)^{+}): W_{k}(G; F)$$
 "

For 2 [0; 1], de ne $_{1;} := I_{[; 1]}$ which is again a non-negative and increasing function.

$$\sup_{G2S h} (X^{G} d)^{+} = \sup_{G2S G(0)} (u) G^{-1}(u) d du$$

$$= \sup_{G2S 2[0;1]} (u) G^{-1}(u) d du$$

$$= \sup_{2[0;1]} \sup_{2[0;1]} (u) G^{-1}(u) d du;$$

$$= \sup_{2[0;1]} \sup_{\frac{2S}{2S}} (u) G^{-1}(u) d du;$$

$$= \sup_{2[0;1]} (u) G^{-1}(u) d du;$$

$$= \sup_{2[0;1]} (u) G^{-1}(u) d du;$$

- 3. Worst-case scenario with transform

Wasserstein distance constraint

Wasserstein distance constraint and stop-loss transform

(ii) The worst-case distribution is given by

$$G^{-1}(t) = F^{-1}(t) + " \frac{(1; (t))^{q-1}}{k_{1;} k_q^{q=k}}; \quad 0 < t < 1:$$

where is the maximizer in (i).

-3. Worst-case scenario with transform

Wasserstein distance constraint

Example - Expected shortfall

Take = ES for some 2 (0; 1).
(i) The worst-case value is

$$\sup_{k=0}^{n} ES ((X^{G} d)^{*}) : W_{k}(G;F) = 0^{0}$$

$$= \frac{1}{1} \max_{2[;1]}^{n} (1) ES (X^{F}) d + (1)^{1+k} = 0^{0}$$

(ii) The worst-case distribution is

$$G^{-1}(t) = F^{-1}(t) + " - \frac{\begin{pmatrix} -1; & (t) \end{pmatrix}^{q-1}}{k_{-1}; & k_q^{q=k}}$$

where $I_{i} = \frac{1}{1} I_{[-i]}$ and is the solution to the maximization problem in (i).

-3. Worst-case scenario with transform

Wasserstein distance constraint

Example - Wang's premium

Figure: Worst-case distributions with stop-loss function.

└-3. Worst-case scenario with transform

Wasserstein distance constraint

Limited-loss function

Take `2(x

-3. Worst-case scenario with transform

Wasserstein distance constraint

Wasserstein distance constraint and limited-loss transform

Theorem (Cai et al. (2022b))

Let k = 2. The worst-case distribution is given by

$$(F)^{1}(u) = \begin{cases} 8 \\ \ge & F^{-1}(u) + & (u); & \text{for } 0 < u & ; \\ M; & \text{for } < u & F(M); \\ F^{-1}(u); & \text{for } F(M) < u < 1 \end{cases}$$

where > 0 and 2 (0; F(M)) satisfies $W_2(F; F) = "$.

-3. Worst-case scenario with transform

Wasserstein distance constraint

Example - Wang's premium (cont')

Figure: Worst-case distributions with limited loss function.

- 3. Worst-case scenario with transform

Wasserstein distance constraint

Wasserstein distance constraint and limited stop-loss transform

Wang's premium h with h(u) = 1 (${}^{1}(1 \ u) + 0$:5). Exponential reference $F_{1}(x) = 1$ e ${}^{x=4}$, x 0 Pareto reference $F_{2}(x) = 1$ $\frac{12}{x+12}$ ⁴ Limited stop-loss function

Wang's premium in the worst-case:

 $\sup_{h} \max (X^{G} d)^{+}; M ; W_{2}(G; F_{i})$ "; i = 1; 2:

- └─3. Worst-case scenario with transform
 - Wasserstein distance constraint

- -3. Worst-case scenario with transform
 - Wasserstein distance plus moments constraints

- 1. Motivation and Background
- 2. Worst-case scenario without transform

Worst-case scenario with transform Wasserstein distance constraint Wasserstein distance plus moments constraints

Conclusion and Reference

-3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Isotonic Projection: For h 2 L²(0; 1), let

Notation

Denote $_{1;}$ (u) := (u) $1_{[;1]}(u)$, for u 2 [0; 1], and the isotonic Projection for $_{1;}$ + F 1 for some 0 as

$$h_{1;;}^{"} = \underset{h_{2K}}{\operatorname{arg\,min}} jjh _{1;} F _{jj_{2}}^{1}$$

Denote $_{2;}$ (u) := (u) $1_{[0;]}(u)$, for u 2 [0; 1], and the isotonic Projection for $_{2;}$ + F 1 for some 0 as

$$h_{2;}^{"} = \underset{h_{2K}}{\operatorname{arg\,min\,}jjh} _{2;} F^{1}jj_{2}$$

- 3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Wasserstein distance plus moments constraints and stop-loss transform

Theorem (Cai et al. (2022a))

Consider the worst-case problem $up_{G2S} h (Y^G d)_+$: The quantile function of the worst-case distribution is

$$G^{1}(u) = + \frac{h_{1; ;}^{"}(u) = a_{;}}{b_{;}}; \quad 0 < u < 1;$$

where $a_{;} = E[h_{1; ;}^{"}(U)], b_{;} = \sqrt{var(h_{1; ;}^{"}(U))}, > 0 \text{ is}$
determined uniquely by the distance constrain $W_{2}(F; G) = "$, and
 $Z_{1} = \underset{2[0;1]}{z_{0}} = \underset{0}{z_{1}}; (u) = G^{1}(u) = d$ du:

-3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Example { Expected shortfall

Assume the reference distribution is (x) = 1 e x=5, = 5, " = 1, and _h = ES_{0:9}.ssume. Wors9c28.909 1(0)]14R8= 1

- 3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Wasserstein distance plus moments constraints and limited-loss transform

Theorem (Cai et al. (2022a))

Consider the worst-case problem $up_{G2S} + Y^G \wedge M$: The quantile function of the worst-case distribution is

-3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Example { Expected shortfall

Assume the reference distribution is (x) = 1 e x=5, = 5, " = 1, and _h = ES_{0:9}:

d	
10	[0; 0:9]
20	0:9835

Summary

In this talk we discuss multiple model uncertainty models Distortion risk measure With or without transform Stop-loss, limited-loss Wasserstein distance, moments contraints

Future works

Other risk measures

General transformation

Various uncertainty sets: likelihood ratio, KL-divergent, etc.

Novel techniques to characterize worst-case distribution and worst-case risk measure value

Reference II

- Dhaene, J., Kukush, A., Linders, D., and Tang, Q. (2012). Remarks on quantiles and distortion risk measures. European Actuarial Journal, 2(2):319(328.
- El Ghaoui L, Oks M, Oustry F (2003) Worst-case value-at-risk and robust portfolio optimization: A conic programming approach. Oper. Res. 51(4):543{556.
- Li, J. Y.-M. (2018). Closed-form solutions for worst-case law invariant risk measures with application to robust portfolio optimization. Operations Research, 66(6):1533(1541.
- Liu, H. and Mao, T. (2021). Distributional robust reinsurance with value-at-risk and conditional value-at-risk. Available at SSRN 3849078
- Liu, F. and Wang, R. (2021). A theory for measures of tail risk. Mathematics of Operations Research 46(3), 1109{1128.
- Hu, X., Yang, H., and Zhang, L. (2015). Optimal retention for a stop-loss reinsurance with incomplete information. Insurance: Mathematics and Economics, 65:15{21.

Sion, M. (1958). On general minimax theorems, Paci c Journal of mathematics , 8(1), 171{176.