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Model uncertainty and applications in insurance design

1. Motivation and Background

Insurance 101

Insurance is an e�ective risk management tool used to protect against
contingent losses of market participants.

X

I (X )
| {z }

Reimbursement

I (X ) � � (I (X ))
| {z }
premium

| {z }
Insurer's loss or bene�t

X � I (X )
| {z }

Insured's retained loss

X � I (X ) + � (I (X ))
| {z }
premium

| {z }
Insured's total loss

whereI 2 I is an admissible indemnity function, and� is a premium
principle.
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1. Motivation and Background

Classical optimization problems in insurance

Popular optimal (re-)insurance design problems:

1. Maximize expected utility:

max
I 2I

E [v(w � X + I (X ) � � (I (X )))] :

� Arrow (1963): optimality of a stop-loss contract.
� Gerber(1979), Young (1999), Kaluszka (2001,2005), etc.

2. Minimize risk measure:

min
I 2I

� (X � I (X ) + � (I (X ))) :

� Cai et al. (2008), Kaluszka and Okolewki (2008), Bernard and Tian
(2009), Cheung (2010), etc.

All problems are considered under the assumption thatthe distribution
of X is known. Can we take this assumption for granted?
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1. Motivation and Background

Uncertainty

From data to models

� Parameter uncertainty
Estimation error, simulation error, etc

� Model uncertainty
Choice of models, complexity of models, etc.

Distributional uncertainty

� Only partial information about the true distribution are observed
from the historical data.

� Changes of the underlying risks

� In a conservative decision, theworst-case distribution is important
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1. Motivation and Background

Worst-case scenario

� Suppose an agent faces an underlying riskX
� ` is the loss function/strategy the agent adopts.
� � is the risk measure used to quantify the agent's risk exposure
� S is the uncertainty set includes all distributions of alternative risks

considered

� From the perspective of risk management, theworst-case scenario
in which the agent has the largest risk exposure is of special
interests.

� The agent's optimization problem with model uncertainty can be
formulated as

min
`

sup
F 2S

� (`(X F ))
| {z }
worst-case scenario

; X F � F:
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1. Motivation and Background

Literature
In the literature of insurance

� Asimit et al. (2017): for � = VaR; ES,
8
<

:

min
( I;P )2I� R

max
k2M

f � Pk (X � I (X ) + P)g;

s.t. ! 0 + (1 + � )HPk (I (X )) � P � �P ;8k 2 M :

wherePk , k 2 M includes �nite many probability measures.
� Birghila and Pug (2019)

min
I 2I

max
F 2C

f � (X F � I (X F ) + � (I (X F )) g; s.t. � (I (X F )) � B

whereC is the convex cone ofn reference distributions.
� Liu and Mao (2021): for � = VaR; ES,

min
d� 0

sup
F 2S (�;� )

� (X F ^ d + (1 + � )EF [(X F � d)+ ]) :

whereS(�; � ) gives �rst & second moments constraints.
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1. Motivation and Background

In this talk, we focus on theworst-case scenario for an agent

sup
F 2S

� h(`(X F )) ; X F � F

where
� � h is a distortion risk measure (e.g. Dhaene et al. (2012)):

� h(X F ) = �
Z 0

�1
h(F (x))d x +

Z 1

0
1 � h(F (x))d x =

Z 1

0
 (u)F � 1(u)du;

whereh : [0; 1] 7! [0; 1] is non-decreasing (convex) withh(0) = 0
and h(1) = 1, and  (u) = h0(u), 0 < u < 1

� S is the uncertainty set de�ned by Wasserstein distance
constraints

� ` is the loss function/strategy the agent adopts.
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Model uncertainty and applications in insurance design

2. Worst-case scenario without transform

Uncertainty set with Wasserstein distance constraint
� For X � F and Y � G, for k � 1, the Wasserstein distance is

Wk (X; Y ) = Wk (F; G) =
� Z 1

0

�
�F � 1(x) � G� 1(x)

�
�k

� 1=k

:

� The uncertainty set with Wasserstein distance constraint

S = f r. v. Y : Wk (Y; X) � "W97  0 87luelG� 1(
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2. Worst-case scenario without transform

Uncertainty set with Wasserstein distance constraint

Theorem (Proposition 4 in Liu et al. (2022))
For a continuous and convex distortion functionh,

sup
�

� h(X G) : Wk (G; F) � "
	

= � h(X F ) + "k kq;

whereq = (1 � 1=k) � 1 with the convention0� 1 = 1 , and jj � jj q is the
L q-norm.
For k > 1, the above maximum value is attained by the worst-case
distribution

G� 1(t ) = F � 1(t ) + "
( (t )) q� 1

k kq=k
q

; 0 < t < 1:
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2. Worst-case scenario without transform

Example { Expected shortfall (ES)
Take � = ES � for � 2 (0; 1), then � (X ) =

R1
0 VaRt (X )dh(t ), where

h(t ) =
1

1 � �
(t � � )+ and  (t ) =

1
1 � �

1 [�; 1]:

The worst-case value is

sup
n

ES� (X G) :
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3. Worst-case scenario with transform

Wasserstein distance constraint

Uncertainty set with Wasserstein distance constraint
� Uncertainty set is

S = f G : Wk (G; F) � " g

whereX F � F is considered as a reference distribution, and" is
the tolerant bound for the Wasserstein distance.

� Consider the worst-case scenario:

sup
G2S

� h(`(X G)) = sup
�

� h(`(X G)) ; Wk (G; F) � "
	

;

with two types of loss functions:
� Stop-loss function: (optimal to the utility maximization)

`(x) = ( x � d)+

� Limited-loss function: (optimal to the VaR minimization)

`(x) = min f x; M g
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3. Worst-case scenario with transform

Wasserstein distance constraint

Stop-loss function
� Take `1(x) = ( x � d)+ for d > ess-inf(X )

� Worst-case risk measure

sup
�

� h(( X G � d)+ ) : Wk (G; F) � "
	

� For � 2 [0; 1], de�ne  1;� :=  � I [�; 1] which is again a non-negative
and increasing function.

sup
G2S

� h

�
(X G � d)+

�
= sup

G2S

Z 1

G(0)
 (u)

�
G� 1(u) � d

�
du

= sup
G2S

max
� 2 [0;1]

Z 1

�
 (u)

�
G� 1(u) � d

�
du

= sup
� 2 [0;1]

sup
G2S

Z 1

0
 1;� (u)

�
G� 1(u) � d

�
du

| {z }
worst-case without transform

;

17 / 37



Model uncertainty and applications in insurance design

3. Worst-case scenario with transform

Wasserstein distance constraint

Wasserstein distance constraint and stop-loss transform

Theorem (Cai et al. (2022b))
Take k � 1 and q = (1 � 1=k) � 1.
(i) The worst-case risk measures value is

sup
n

� h(( X G � d)+ ) : Wk (G; F) � "
o

= max
� 2 [0;1]

� Z 1

0
 1;� (u)F � 1(u)du + "k 1;� kq � dk 1;� k1

�
:

(ii) The worst-case distribution is given by

G� 1(t ) = F � 1(t ) + " �
( 1;� � (t )) q� 1

k 1;� � kq=k
q

; 0 < t < 1:

where� � is the maximizer in (i).
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3. Worst-case scenario with transform

Wasserstein distance constraint

Example - Expected shortfall

Take � = ES � for some� 2 (0; 1).
(i) The worst-case value is

sup
n

ES� (( X G � d)+ ) : Wk (G; F) � "
o

=
1

1 � �
max

� 2 [�; 1]

n
(1 � � )

�
ES� (X F̂ ) � d

�
+ " (1 � � )1=�k

o
:

(ii) The worst-case distribution is

G� 1(t ) = F � 1(t ) + " �
( 1;� � (t )) q� 1

k 1;� � kq=k
q

where 1;� � = 1
1� � I [� _ � � ;1] and � � is the solution to the

maximization problem in (i).
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3. Worst-case scenario with transform

Wasserstein distance constraint

Example - Wang's premium

Figure: Worst-case distributions with stop-loss function.
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Limited-loss function

� Take `2(x
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3. Worst-case scenario with transform

Wasserstein distance constraint

Wasserstein distance constraint and limited-loss
transform

Theorem (Cai et al. (2022b))
Let k = 2 . The worst-case distribution is given by

(F � ) � 1(u) =

8
><

>:

F � 1(u) + � �  (u); for 0 < u � � � ;

M; for � � < u � F(M);

F � 1(u); for F(M) < u < 1

where� � > 0 and � � 2 (0; F (M)) satis�es W2(F � ; F ) = " .
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3. Worst-case scenario with transform

Wasserstein distance constraint

Example - Wang's premium (cont')

Figure: Worst-case distributions with limited loss function.
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3. Worst-case scenario with transform

Wasserstein distance constraint

Wasserstein distance constraint and limited stop-loss
transform

� Wang's premium� h with h(u) = 1 � �(� � 1(1 � u) + 0 :5).

� Exponential referenceF1(x) = 1 � e� x=4, x � 0

� Pareto referenceF2(x) = 1 �
�

12
x+12

� 4

� Limited stop-loss function

`(x) = max
�

(x � d)+ ; M
	

� Wang's premium in the worst-case:

sup
�

� h
�
max

�
(X G � d)+ ; M

	�
; W2(G; Fi ) � "

	
; i = 1 ; 2:
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3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Isotonic Projection: For h 2 L 2(0; 1), let

h" = arg min
k2K

jj h � kjj 2;

where K =
�

k : (0; 1) 7! R

�
�
�
�

Z 1

0
k(u)2du < 1 ; k non-decreasing

�
:

Notation
� Denote  1;� (u) :=  (u) 1[�; 1](u), for u 2 [0; 1], and the isotonic

Projection for  1;� + �F � 1 for some� � 0 as

h"
1;�;� = arg min

h2K
jj h �  1;� � �F � 1jj 2:

� Denote  2;� (u) :=  (u) 1[0;� ](u), for u 2 [0; 1], and the isotonic
Projection for  2;� + �F � 1 for some� � 0 as

h"
2;�;� = arg min

h2K
jj h �  2;� � �F � 1jj 2:
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3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Wasserstein distance plus moments constraints and
stop-loss transform

Theorem (Cai et al. (2022a))
Consider the worst-case problemsupG2S � h

�
(YG � d)+

�
:

The quantile function of the worst-case distribution is

G� 1
� � (u) = � + �

 
h"

1;� � ;� (u) � a� � ;�

b� � ;�

!

; 0 < u < 1;

wherea� � ;� = E[h"
1;� � ;� (U)], b� � ;� =

q
var(h"

1;� � ;� (U)) , � > 0 is
determined uniquely by the distance constraintW2(F; G� � ) = " , and

� � = arg max
� 2 [0;1]

Z 1

0
 1;� (u)

�
G� 1

� (u) � d
�

du:
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3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Example { Expected shortfall

Assume the reference distribution isF(x) = 1 � e� x=5, � = � = 5,
" = 1, and � h = ES0:9.ssume
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3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Wasserstein distance plus moments constraints and
limited-loss transform

Theorem (Cai et al. (2022a))
Consider the worst-case problemsupG2S � h

�
YG ^ M

�
:

The quantile function of the worst-case distribution is
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3. Worst-case scenario with transform

Wasserstein distance plus moments constraints

Example { Expected shortfall

Assume the reference distribution isF(x) = 1 � e� x=5, � = � = 5,
" = 1, and � h = ES0:9:

d � �

10 [0; 0:9]
20 0:9835
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Conclusion and Reference

Summary

In this talk we discuss multiple model uncertainty models

� Distortion risk measure
� With or without transform

� Stop-loss, limited-loss

� Wasserstein distance, moments contraints

Future works

� Other risk measures

� General transformation

� Various uncertainty sets: likelihood ratio, KL-divergent, etc.

� Novel techniques to characterize worst-case distribution and
worst-case risk measure value

35 / 37





Model uncertainty and applications in insurance design

Conclusion and Reference

Reference II

Dhaene, J., Kukush, A., Linders, D., and Tang, Q. (2012). Remarks on quantiles and distortion
risk measures.European Actuarial Journal, 2(2):319{328.

El Ghaoui L, Oks M, Oustry F (2003) Worst-case value-at-risk and robust portfolio optimization:
A conic programming approach. Oper. Res. 51(4):543{556.

Li, J. Y.-M. (2018). Closed-form solutions for worst-case law invariant risk measures with
application to robust portfolio optimization. Operations Research, 66(6):1533{1541.

Liu, H. and Mao, T. (2021). Distributional robust reinsurance with value-at-risk and conditional
value-at-risk. Available at SSRN 3849078

Liu, F. and Wang, R. (2021). A theory for measures of tail risk. Mathematics of Operations
Research, 46(3), 1109{1128.

Hu, X., Yang, H., and Zhang, L. (2015). Optimal retention for a stop-loss reinsurance with
incomplete information. Insurance: Mathematics and Economics, 65:15{21.

Sion, M. (1958). On general minimax theorems, Paci�c Journal of mathematics , 8(1), 171{176.

37 / 37


	1. Motivation and Background
	2. Worst-case scenario without transform
	3. Worst-case scenario with transform
	Conclusion and Reference
	References

